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Abstract

In the present work we show the connections between the topology of four-manifolds, conformal field theory, the
mathematical probability theory and Cantorian space-time. In all these different mathematical fields, we find as the
main connection the appearance of the golden mean.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

First of all let us draw attention to a close connection between e(1) theory and the topology of four-manifolds. This
connection between Cantorian space-time and iterated capped surface stems from the fact that the grope heights are
given by the Fibonacci numbers. A capped surface is a surface in S · R2 (S a surface) obtained by replacing disks in
S with copies of the picture. The disks are called the caps of the surface. The starting surface is a disk and the iterated
capped surface constructions define capped gropes. The original surface is the first stage; the surfaces replacing the first
stage caps are the second stage and so on. A capped grope has a height at least n if the replacement has been done at
least n � 1 times.

Let an denote the height after n steps. The grope heights are then given by [1,2]
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The Fibonacci sequence bn can be expressed in other way
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and finally the expression of bn in terms of / and 1
/ can be written as� �
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The grope heights can be now expressed in terms of / as following:
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In the limit these surfaces tend to a fractal-like space akin to e(1). The Cantorian space-time e(1) is constructed as an
infinite number of elementary Cantor sets with all conceivable Hausdorff dimensions. All possible union and intersec-
tions form the e(1) Cantorian space-time as shown in detail by El Naschie. This space is defined by three dimensions,
the formal dimension df = 1, the topological dimension dT = 4 and the Hausdorff dimension hdci = 4 + /3 =
4.236067977. The Hausdorff dimension is given in [3] as the expectation of a discrete gamma distribution
hdci ¼
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¼ 0:618033983 is the golden mean. The formula for dðnÞ
c is given in [3] as
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When setting n = 4 and dð0Þ
c ¼ / we obtain
d ð4Þ
c ¼ 1

/3
.

The Hausdorff dimension of e(1) is now
hdci ¼ dð4Þ
c ¼ 1

/3
¼ 4þ /3 ¼ 4:236067977.
The exact topological embedding dimension corresponding to the Hausdorff expectation dimension 1
/3 ¼ 4þ /3 is

exactly dT = 4.
In [4] the connection between the geometry of four-manifolds and / is explained. The dimension of the kernel of e(1)

is DimKer e(1) = /. The limit set with the dimension / is equal to the dimension of the kernel of e(1) and it is a Cantor-
like set. Thus the Cokernel of e(1) has the same dimension as the complement of the limit set
DimCoKer eð1Þ ¼ 1� / ¼ /2.
Following [4]
s ¼ DimKer eð1Þ �DimCoKer eð1Þ ¼ /� /2 ¼ /ð1� /Þ ¼ //2 ¼ /3;
and the inverse value of s is equal to the Hausdorff dimension of e(1)
1

s
¼ 1

/3
¼ 4þ /3.
2. Knot theory

Next, we write down some theorems and definitions related to knots in higher dimensions.

Theorem 1. A locally flat embedding f :S2 ! S4 is unknotted (isotopic to the standard embedding) if and only if for a

homomorphism p1 is
p1ðS4 � f ðS2ÞÞ � Z.
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Following [2] it is shown that for nP 2 an embedding f :Sn ! Sn+2 is unknotted if and only if the complement is
homotopy equivalent to S1. In higher dimensions there are many knots whose complements have fundamental group
Z, but not the homotopy type of S1.

Definition 2. We call an embedding of S1 in a homology 3-sphere N ‘‘Z-slice’’ if it extends to a (locally flat) embedding
of D2 in the contractible four-manifold bounding N so that the complement has fundamental group Z, but not the
homotopy type of S1.

Theorem 3. An embedding f :S1 ! N, N a three-dimensional manifold homology sphere, is Z-slice if and only if the natural

homomorphism p1(N � f(S1)) ! Z has a perfect kernel, or equivalently, the Alexander polynomial of the knot is 1.

If f :Sn ! Sn+2 is an embedding then there is a map (Sn+2 � f(Sn)) ! S1 which is a Z homology equivalence, but
when n > 4 usually is not a homology equivalence even if p1(S

n+2 � f(Sn)) � Z.
This theory does not extend to dimension 4, even for good fundamental groups, these are poly-(finite or cyclic)

groups following the Definition 2. In [4] a new view point of how to obtain a real knot in a four-dimensional space
is explained. All knots are equivalently trivial and dissolve in this higher dimensional space. A geometrical object cor-
responding to the circle must have the dimension 2. In a four dimensional space we have therefore a codimension 2. The
topological dimension of e(1) is four. We can have a knot only when the object corresponding to the circle is of the
dimension 2 and also the codimension is equal 2. The Frisch–Wasserman–Delbrück conjecture says that the probability
for a randomly embedded circle to be knotted tend to one as the length of the circle tends to infinity. For a fractal circle
the length is infinite and a fractal circle is everywhere knotted. This is an important mathematical result, which could be
used to explain the existence of elementary particles as knots in the fabric of space-time.
3. Polylogarithm identities in a conformal field theory

In conformal field theory it might be surprising to know that we encounter the golden mean. Polylogarithm identities
can be expressed in term of 2 � s = /2, where s ¼ 1
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and also in term of /. The three identities following [5] are
given:
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it is possible to express Li2(z) in terms of elementary functions as [5]
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The dilogarithm Li2(/
2) can be written in term of /
Li2ð/2Þ ¼ p2
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Similar it is possible to obtain Li2(/) from the first identity by inserting for z = /2
Li2ð/2Þ þ Li2ð1� /2Þ ¼ p2
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Inserting z = /2 in the second identity we can express Li2(�/) in term of /
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The dilogarithms Li2(/
2), Li2(/), Li2(�/), Li2 � 1

/ could be expressed in terms of elementary functions and /.
Polylogarithm identities in D = 3 are similar. Following [5] one finds
1
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For z = / we obtain the following expression:
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We see that the properties of the golden mean are of a great importance for the expression of polylogaritms in terms of
elementary functions.
4. Mathematical probability theory

The mathematical theory of probability plays a major role in quantum mechanics. Following [6–8] we see that clas-
sical probability is involved in the two-slit experiment. The probability to observe a wave like or a particle like behavior
is identical and so we can conclude that particles and waves are fundamentally indistinguishable in quantum space-time.

A particle could pass one of the two slits. The probability that the particle goes through slit 1 is P1 and the prob-
ability of going through slit 2 is P2. Following [6–8] the total probability is given by the union or subtraction of the two
events as
P ¼ jP 1 � P 2j
where P1 + P2 = 1.
But a quantum particle can pass through slit one and slit two simultaneously. In this case the intersection rule gives

us
P ¼ j � P 1P 2j.
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The final result is now the equation of Gödel undecidability [7]
jP 1 � P 2j ¼ j � P 1P 2j
By inserting P2 = 1 � P1 in the above condition we find
P 2
1 þ P 1 � 1 ¼ 0;
as our first equation.
The solution of this equation is
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A second equation which we obtain by inserting P2 = 1 � P1 is
P 2
1 � 3P þ 1 ¼ 0.
The solution of this quadratic equation is
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The total probability is thus
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We see that the inverse of the total probability of the first solution /3 is 1
/3 ¼ 4þ /3. This is the expectation value of the

Hausdorff dimension of Cantorian space-time e(1). We should recall that the value of the golden mean / ¼
ffiffi
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is the
Hausdorff dimension of a randomly constructed Cantor set. This is the Mauldin–Williams theorem which states that
with the probability one the Hausdorff dimension of a randomly constructed Cantor set is / ¼
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. The Cantorian
space-time is consequently a large fuzzy manifold and the hyper Kähler manifold following [7] is what is required
by the two-slit experiment as a substructure of e(1).

The two-slit experiment can be extend to a 3,4, . . . slit experiment. The solutions of both previous equations are /
and /2 remain the same and the total probability is 4 + /3 which is the Hausdorff dimension of e(1)
hdci ¼ 4þ /3.
This Hausdorff dimension can also be written as
hdci ¼
X1
n¼1

n/n ¼ 1 � /1 þ 2 � /2 þ 3 � /3 þ � � � ¼ 4þ /3.
In this sum there appears the solutions / and /2. But the solutions for 3,4, . . . slit experiments are all elements of the
values of /n following [6]. The equation, which we obtain after rearrangements, should be a quadratic equation of the
form
P 2
1 þ ð�1Þn�1anP 1 þ ð�1Þn ¼ 0;
where a1 = 1, a2 = 3, an = an�2 + an�1, n > 2.
The solutions of these quadratic equations are the values of /n.

The value of the golden mean / ¼
ffiffi
5

p
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2

appears also in another situations. It is conjectured that for three variables X,
Y, Z such that P(X > Y), P(Y > Z) and P(Z > X) can all three probabilities be as large as the golden mean / following a
classical text book on theory of probability [9].

We can write the sum of three probabilities as
P ¼ P 1 þ P 2 þ P 3 � P 1P 2 � P 2P 3 � P 1P 3 þ P 1P 2P 3;
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and P 6 1. If P1 = P2 = P3, then we can write
P ¼ 3P 1 � 3P 2
1 þ P 3

1;
and for the values 0 < P1 < / and / < P1 < 1 the probability P < 1. For P1 = / the probability P is very close to 1.
5. Conclusion

The golden mean / ¼
ffiffi
5

p
�1
2

is fundamental in the Cantorian space-time e(1). In other mathematical fields such as in
mathematical analysis, in conformal field theory, in the topology of four-manifold the golden mean is also of great
importance. In the present work we presented the connections between random Cantor set and the two-slit gedanken
experiment following [6–8]. It is extremely important to notice that in our discussion of the two-slit experiment we do
not use anywhere wave equations of any type. Wave-like behavior is not identical to wave. Also the notion of proba-
bility wave is not used or accepted in the present work. Our solution is thus a reinterpretation of Feynman path integral
following El Naschie�s modification of micro space-time geometry and topology.
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